Keyword Spotting Based on Phoneme Confusion Matrix

نویسندگان

  • Pengyuan Zhang
  • Jian Shao
  • Jiang Han
  • Zhaojie Liu
  • Yonghong Yan
چکیده

For many practical applications of keyword spotting, input signal is a spontaneous conversation while the acoustic model was trained with read speech because of data availability. Generally speaking, keyword spotting system will degrade significantly because of mismatch between acoustic model and spontaneous speech. To solve this problem, this paper presents a two-pass keyword spotting strategy. In order to improve the retrieval performance, an improved phoneme confusion matrix is adopted. It will give more freedom in the representation so as to alleviate the effect of mismatched training condition and of phoneme misrecognition. Furthermore, a hybrid confidence measure is applied to reject false alarms. Experiments show that the proposed algorithms significantly reduced equal error rate (EER) on the telephone conversational task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phoneme-Lattice to Phoneme-Sequence Matching Algorithm Based on Dynamic Programming

A novel phoneme-lattice to phoneme-sequence matching algorithm based on dynamic programming is presented in this paper. Phoneme lattices have been shown to be a good choice to encode in a compact way alternative decoding hypotheses from a speech recognition system. These are typically used for the spoken term detection and keyword-spotting tasks, where a phoneme sequence query is matched to a r...

متن کامل

Discriminatively trained phoneme confusion model for keyword spotting

Keyword Spotting (KWS) aims at detecting speech segments that contain a given query within large amounts of audio data. Typically, a speech recognizer is involved in a first indexing step. One of the challenges of KWS is how to handle recognition errors and out-of-vocabulary (OOV) terms. This work proposes the use of discriminative training to construct a phoneme confusion model, which expands ...

متن کامل

Keyword Spotting in A-capella Singing

Keyword spotting (or spoken term detection) is an interesting task in Music Information Retrieval that can be applied to a number of problems. Its purposes include topical search and improvements for genre classification. Keyword spotting is a well-researched task on pure speech, but state-of-the-art approaches cannot be easily transferred to singing because phoneme durations have much higher v...

متن کامل

A fast fuzzy keyword spotting algorithm based on syllable confusion network

This paper presents a fast fuzzy search algorithm to extract keyword candidates from syllable confusion networks (SCNs) in Mandarin spontaneous speech. Since the recognition accuracy of spontaneous speech is quite poor, syllable confusion matrix (SCM) is applied to compensate for the recognition errors and to improve recall. For fast retrieval, an efficient vocabulary-independent index structur...

متن کامل

Comparison of keyword spotting approaches for informal continuous speech

This paper describes several approaches to keyword spotting (KWS) for informal continuous speech. We compare acoustic keyword spotting, spotting in word lattices generated by large vocabulary continuous speech recognition and a hybrid approach making use of phoneme lattices generated by a phoneme recognizer. The systems are compared on carefully defined test data extracted from ICSI meeting dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006